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DYNAMIC STRAIN OF A CONDUCTING HALF SPACE WITH 

A CAVITY IN A STRONG MAGNETIC FIELD 

L. A. Fil'shtinskii and L. I. Fomenko UDC 539.3 

The mechanical excitation of dia(para)magnetics in a static magnetic field creates an 
induced (rotational) current inside the body, which leads to the formation of Lorentz body 
forces, which are calculated by a tensor of Maxwellian stresses, which introduce large cor- 
rections in the stress state of the body. 

Below we examine a conducting elastic half space with tunnel cavities which is sub- 
jected to mechanical excitation in a homogeneous static magnetic field. The corresponding 
magnetoelastic problem is reduced to a singular integral equation, which is solved numeric- 
ally with the use of the method of mechanical quadratures. Calculated results are pre- 
sented, which characterize the stress concentrations at the contour of the cavity as a func- 
tion of the configuration of the aperture, the magnitude of the applied magnetic field, and 
the frequency of the excitation. 

i. Basic Linear Magnetoelastic Equations and Formulation of the Problem. 
system of magnetoelastic equations include [1-3] the equations of motion 

Maxwell's equations 

aj(si~ n t- peEi n t- (j x B)~ = pO~uJat ~ (,, ] = ~, 2, 3); 

rot E q- OB/Ot ---- 0, rot H - -  OD/Ot ---- j, div D = Pe, div B ----- 0 
and the material equations 

k, 

D = e E q - a ( v  • H ) , B  = ~ H - - o : ( v  • E), 

] = p ~ v + ~ ( E + v  • B ) , o ~ = ~  --%~o, 

crij = 2~*eij q- )~6ije~h, e i j =  (l/2)(Ojtti q- aiuj) , 

Oi=O/Oxi ,  v = a u l ~ t  (6 ], k = 1 , 2 , 3 ) .  

The b o u n d a r y  c o n d i t i o n s  on t h e  s e p a r a t i o n  s u r f a c e  b e t w e e n  two m e d i a  h a v e  t h e  f o r m  

The total 

(1.1) 

(1.2) 

( 1 . 3 )  

[E +v • B]~ =0, [H--v • D]~ =0, (1.4) 

[a]~ = 0 ,  [D]~ = 0 ,  [ ~ ( E - t - v  • B) + &v]~ = 0 ,  

Dij  + t~Anj = Xi= (i, y, k = t,  2, 3), 

tij = E iD:  + H~Bj - -  ( t /2)Si j (EkDk + B~Hk).  

Here E, D and H, B are the intensities and inductions, correspondingly of the electric and 
magnetic fields; s, s 0 and ~e, ~0 are the electric and magnetic permeabilities in the ma- 
terial and in a vacuum; Pe is the spatial density of the electric charge; j is the current 
density; p is the density of the material; u i and aij are the mechanical displacements and 
stresses; the Xin are the components of the external surface load; ~ and I are the Lame con- 
stants; 6ij is the Kronecker delta; and the symbol [ ] is a jump in the corresponding quan- 
tity at the separation line of the media. 

Let a static magnetic field H ~ act on a quiescent magnetoelastic medium. The external 
excitation creates a body strain and the creation of an electromagnetic field which can be 
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described by small fluctuations e = (el, e2, es) and h = ( h i ,  h=, ha). Hereafter we will 
assume that the field is quasistatic (D = 0 and 8D/St = 0). 

If we assume H = H ~ + h and E = e, the system (1.1)-(1.4) can be written as follows 

~V~U + (L + ~)grad div u + ~ ( j  X H ~ = pO~u/Ot ~, 

rot h = j, rot e = ~9~Oh/Ot, div h = O, 

b = ~eh, j = o(e + ~ev • H~ 

[e + ~%v • H~ = 0, [h]~ = 0, [~(e + ~ev • H~ = 0, 

[~h]~  = 0, 

For some materials (AI and Cu, for example), it is convenient to simplify the model 
and assign ideal conductivity (a + =). In this case we arrive at a closed system of equa- 
tions 

~V2U + (~ + ~) grad div u + ~ rot  h • H ~ = pO~u/OtL ( 1 . 5 )  

h = rot (u • H~ e = - - ~ ( v  • H~ [h]~ = O, 

[~eh]n = O, 

We w i l l  assume t h a t  t h e  m a g n e t o e l a s t i c  medium i s  inhomogeneous ,  name ly :  t h e  medium 
c o n t a i n s  t h e  c y l i n d r i c a l  c a v i t i e s  Lj ( j  = 1 , . . . , k )  a l o n g  t h e  xa a x i s ,  and t h e  v e c t o r  o f  t h e  
i n i t i a l  m a g n e t i c  f i e l d  H ~ = (0 ;  H0; O) ( F i g .  1 ) .  The c o r r e s p o n d i n g  s t a t i c  f i e l d  i s  de-  
s c r i b e d  by t h e  s y s t e m  o f  e q u a t i o n s  

~tY2ui+ ( ~ + ~ ) 0 i 0 = 0 ,  0 = 0 ~ l + 0 ~ u 2 ,  ~V~u3~0, V e = 0 ~  + 0 22 ( i=1,  2) 

and t h e  b o u n d a r y  c o n d i t i o n s  

o n cos * ~i el~ s i n ,  = Xln m u~~ H~(I + • sin 2 *) cos , ,  

• X~o H 2 %1 c o s ,  + %2 sin ~p = X2n ~ - ' T  .o (1 + • sin ~ , )  sin ~, 

~a cos ~ + ~ , s i n  ~ ~ Xan, • = ~e/~o -- 1, 

Here ~ is the angle between the normal to the contour Lj and the axis Ox~ (Fig. i) the as- 
terisk refers to the inside of the cavity. 

Thus, the static field is determined by the usual static equations of the theory of 
elasticity, where the two-dimensional problem is divided into states of plane and antiplane 
strain. For materials such as copper, aluminum, and several others, the magnetic permeabil- 
ity is almost the same as the magnetic permeability of a vacuum. Therefore we can set < = 
0. In this case the previous static magnetic field generally does not effect the stress 
state of the body. 

We now determine the fluctuation field. From (1.5) we obtain the following equations: 
for the plane strain, the equations of motion are 

/ 

t t l l l I l I I I t t l t . o  
Fig. 1 
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(1 ~- Z~)Wu~ + o,0~0 = ~ ~ 
c 2 Ot ~ P"~ 

J 02U2 ~2 ~teH~2~ ~. 2 C t~t 
V~'u~ + a .O~O= e~ ot ~ ' = +V+ ' ~* = ~ ' 

the components of the electromagnetic field are 

t h =: HoO2Ul, h 2 -= --HoOlUl,  h3 ~= O, e~ = e2 = O, 

and  t h e  t a c m n d a ~  c o n d i t i o n s  on Lj ( j  = 1 . . . .  , k )  , a re  

cq~ c o s ,  + % s i n ,  = X~ + ~o• § 
-{- • sin ~(h 1 cos ~b -{- h~ .sin tp)) cos "qJ, 

~21 cos ~p q- (~2~ sin ~p =- X i~  ~ ~o• cos ~p -~ 

q- h 2 sin ~)(1 q- r sin ~ ~b), 

h~ --  h 1 (i + • cos ~ +~) + (• h~ sin 2~, h~ = h~ (i + • sin ~ r q- (• hi sin 2~2; 

f o r  t h e  a n t i p l a n e  s t r a i n ,  t h e  e q u a t i o n s  o f  m o t i o n  a r e  

i 02us 
V %  + x~O~u~ = -y or-- r ,  ( 1 . 6 )  

the components of the magnetic field are 

h 1 = h 2 = O, h3 = HoOkup, el -= --9~HoOu3/Ot, e2 ---- e3 = O, ( 1 . 7 )  

and t h e  b o u n d a ~  c o n d i t i o n s  on L j  ( j  = 1, . . . .  k )  a r e  

%1 cos ~2 + %2 sin ~ = X3n, h~ = h 3. ( 1 . 8 )  

Below we w i l l  e x a m i n e  t h e  p r o b l e m  o f  t h e  a n t i p ! a n e  s t r a i n  ( 1 . 6 ) - ( 1 . 8 )  f o r  a c o n d u c t i n g  
h a l f  s p a c e  x2 > 0 w i t h  c y l i n d r i c a l  c a v i t i e s  Lj a l o n g  xa ( s e e  F i g .  1 ) .  L e t  t h e  h a l f  s p a c e  be 
f r e e  o f  f o r c e s  and  b o u n d e d  by a vacuum,  w h e r e  t h e  s t a t i c  m a g n e t i c  f i e l d  i n  t h e  vacuum i s  
(0; H~; 0), but in the medium the field is (0; H0; 0), where H 0 = ~0Wo/~e : For a mechanical 

excitation, we take either the shear load Xan = Re(Xae-imt), which is independent of the co- 
ordinate x 3 and which acts on the cavity surfaces or else we take a shear displacement wave 
coming in from infinity: 

o o --ir o Be (U3e ), U~ U e x p ( - - i ' p ( x l c o s ~ 3 +  x i s i n ~ ) ) ,  ( i . 9 )  7s 3 ~ 

U= onst, 

The mechanical field in the half space with the cavities is composed of the field of an 
incoming wave (1.9), the field of a reflected wave 

u~ = He (U~e-~~ U~ = U exp ( - - i  7 (x~ cos ~ - -  x~ sin ~)) ( 1 . 1 0 )  

and a s c a t t e r e d  f i e l d ,  w h i c h  i s  r e p r e s e n t e d  i n  t h e  f o r m  

u~ = Re (Use -~ ) ,  ( 1 .1  1 ) 

U3 = S P (~) (/E/(01) (~)iPL'I) "~ H'~l) ('~2F1)) d3, 
L 

r ~ = l ~ - - z ~ l ,  r l = l ~ - - z ~ l ,  ~ = ~  q- i ~ n = u n ~ .  

H e r e  P(~) = {p~(~), ~ ~ Lj} i s  t h e  unknown d e n s i t y ;  H(n l ) (x )  i s  t h e  n - t h  o r d e r  H a n k e l  f u n c t i o n  
of the first kind; ds is an element of arc of the contour L; and integration is counter- 
clockwise. The representation (i.ii) automatically satisfies the condition oa~ = 0 at the 
boundary of the half space and the radiation Condition, and the function u3 is the solution 
of Eq (1.6). 

2. Integral Equation of the Boundary Problem. The boundary condition (1.8) on Lj is 
represented in the amplitudes 

(S,~ -)  S~ + SI~) c o s ,  + (S,~ ~c SOs + S~a) s i n ,  = Xa ( 2 . 1 )  
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where Si~, SOl3, and $ii3 are,the corresponding amplitudes of the quantities oi3, ~ooi3, and 

oIi3./ 

By calculating the stresses from Eqs. (1.3) with a consideration of (i.ii) and substi- 
tuting their limiting values for z-~ ~0 ~ Ly into the boundary condition (2.1), we come to 
the integral equation for p(r 

P (;o) q- ] P (;) G (;; ;o) ds ---- N (~o), ( 2 . 2 )  
L 

( ) %o 2 Re ~ (%) % (H~(~,~r~o) Re (~(4o)-e ) + G(;; ;o)- ~(*o) ;~--%o +~-7~o) 

+ (4o) 

x~ + ~ (~o~ (~ - 4) u~ + oos (~ + 4) u ~ )  2r (;)- ~ (,) 

n ( 4 ) = - - 2 i I m  , c ( 4 ) = c o s 4 q -  V ~ ,  

* I $ - -  ; ol, a (4) = - 7 ~ '  r~o = I;~ - ;~o I, ~o = 

We note that in the absence of a previous magnetic field (X = 0), Eq. (2.2) is a Fred- 
holm integral equation of the second kind. If, however, X > 0, then we obtain a singular 
integral equation of the second kind. 

3. Stress Concentration. In determining the wave field of stresses in the body, it is 
necessary to consider the Maxwellian contributions. Therefore, in the general case, the 
shear stresses in a plane perpendicular to the cavity contour are determined by 

% = - -  (~,_3 + Ol~ + ~8 q- tls) sin 4 + ( ~  + o~ + o~3 + t~a) cos 4, ( 3 . 1 )  

T, = Re (Te-~) 

The Maxwellian stresses t[3 in our case have the form 

t13 = 0, t~a = ~teH2oO2U3. ( 3 . 2 )  

By i n t r o d u c i n g  Eqs .  ( 1 . 3 ) ,  ( 1 . 9 ) - ( 1 . 1 1 ) ,  and ( 3 . 2 )  i n t o  Eq. ( 3 . 1 ) ,  we d e t e r m i n e  t h e  a m p l i -  
t u d e  o f  t h e  s t r e s s e s  a t  t h e  p o i n t  ~o ~ L: 

T ( ; o ) = - - 2 i ~ ] / 1 + X ~ p ( ; o ) R e [ a ( , o ) ]  + p ( ; ) K ( ; ; ; o ) d s q -  ( 3 . 3 )  

+ i~7 (sin (40 --  ~) U~ + sin (40 q- {5) U~), 

K(;;;o)=2iP']/r~t+X2Im (C(*o) ) - ~1 -- ;lo --  ~t72 (H~ (72rlo) b 4 Y(~ 1) (?2r~o) b*), 

b ---- cos alo sin 4o --  ] /  I 6 %~ cos 40 sin oqo, 

b $ = cos  Ggr Sill ~0 - -  V l -~- ~2 COS r s i n  O51o. 

Example. Let the half space be weakened by a cavity with an elliptical cross section 
~i = al cos #, and $2 = h + bl sin ~. We will assume that the surface of the cavity is free 
from stresses, and that a magnetoelastic shear wave (1.9) comes from infinity along the x 2 
axis. In order to determine the stresses at the contour of the cavity from Eq. (3.3), it is 
necessary to know the function p(~) which is determined from the integral equation (2.2). 
The latter is solved numerically by the method of mechanical quadratures [4]. The results 
calculating the quantities <T> = T/T 0 as a function of x2R, where T o = ~Uy and R = (az + bl)/ 
2, are shown in iFigs. 2 and 3 for the following parameters: a I = i, b z = 0.75, and h = 
1.75. Curves in Fig. 2 correspond to the point of the contour # = 7/2; curves in Fig. 3 
correspond to the point ~ = 0. Curves 1-3 are constructed for X = 0, 0.5, and i. Curve 4 
corresponds to a circular cavity a I = b z = I, h = 1.5, X = 0, ~ = 77/8, and ~ = -~r/2. The 
points show corresponding data obtained by a completely different method [5]. 

The results of the calculations show that not considering the previous magnetic field 
in analyzing the dynamic strain of a body can lead to a calculated strength of the body that 
is larger than the actual strength. 
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TRANSMISSION OF A PRESSURE PULSE TO METALLIC 

AND DIELECTRIC TARGETS IRRADIATED BY A NEODYMIUM 

LASER IN THE FREE GENERATION REGIME 

L. I. Kuznetsov UDC 535.9.082:53.082.73 

Pressure oscillations which are measured by a piezotransducer on the back side of tar- 
gets are observed when concentrated energy fluxes, e.g., from laser radiation, interact with 
a material [i]. Zhiryakov et al. [i] observed pressure oscillations on a lead target for 
J = 2 MW/cm 2, which disappeared rapidly when J was increased. Possible mechanisms for cre- 
ating the oscillations due to an autovibration regime of self-screening or spurts of absorp- 
tion in the plasma of light-eroding flares in the unstable evaporation regime have been ana- 
lyzed in detail [2, 3]. 

Experiments were conducted in the VIKA vacuum chamber for a detailed investigation of 
pressure oscillations in targets [4]. Pulsed laser radiation with a wavelength of 1.06 pm 
and a pulse width at half maximum of 3"10 -~ sec acted on metallic and dielectric targets in 
a chamber whose pressure could be varied from 105 to 10 -2 Pa. The diameter of the radiation 
spot in most cases was 6 mm; the target diameter was 20 mm. 

The target 1 was mounted on a piezotransducer (Fig. i), which operated as a voltage 
source. Its main feature was a long wave guide behind the piezoelement 2, which gave a read 
time up to 1.5 msec for both the initial and the reflected signal. The transducer was well 
shielded from electric and acoustic fields. A wideband amplifier 6, designed with an RC in- 
put on the order of I-i00 sec, was connected directly to the transducer in the vacuum cham- 
ber, which provided a very small charge loss from the piezoelement during the read time. 
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